VOICE CONVERSION

Hung-yi Lee

What is Voice Conversion (VC)?

What is preserved? Content

What is changed? Many different aspects ...

Speaker

- The same sentence said by different people has different effect.
- Deep Fake: Fool humans / speaker verification system
- One simple way to achieve personalized TTS
- Singing

[Nachmani, et al., INTERSPEECH'19]

https://enk100.github.io/Unsupervised_Singing_Voice_Conversion/

[Deng, et al., ICASSP'20]

https://tencent-ailab.github.io/pitch-net/

Speaker

• Privacy Preserving [Srivastava, et al., arXiv'19]

Speaking Style

Emotion

[Gao, et al., INTERSPEECH'19]

- Normal-to-Lombard [Seshadri, et al., ICASSP'19]
- Whisper-to-Normal [Patel, et al., SSW'19]

Normal

Lombard

Source of audio: https://shreyas253.github.io/SpStyl eConv_CycleGAN/

• Singers vocal technique conversion [Luo, et al., ICASSP'20]

'lip thrill' (彈唇) or 'vibrato' (顫音)

Improving Intelligibility

- Improving the speech intelligibility
 - surgical patients who have had parts of their articulators removed

[Biadsy, et al., INTERSPEECH'19][Chen et al., INTERSPEECH'19]

- Accent conversion
 - voice quality of a non-native speaker and the pronunciation patterns of a native speaker
 - Can be used in language learning

Data Augmentation

[Keskin, et al., ICML workshop'19]

In real implementation ...

- Rule-based: Griffin-Lim algorithm
- Deep Learning: WaveNet

Used in VC, TTS, Speech Separation, etc. (not today)

Categories

Lack of training data:

- Model Pre-training [Huang, et al., arXiv'19]
- Synthesized data!

Parallel Data

Unparallel Data

[Biadsy, et al., INTERSPEECH'19]

- This is "audio style transfer"
- Borrowing techniques from image style transfer

How are you?

Feature Disentangle

Feature Disentangle

Feature Disentangle

as close as possible (L1 or L2 distance)

How can you make one encoder for content and one for speaker?

Using Speaker Information

Assume we know the speakers of training utterances

• One-hot vector for each speaker

Using Speaker Information

Assume we know the speakers of training utterances

One-hot vector for each speaker

• One-hot vector for each speaker

Issue: difficult to consider new speakers

• Speaker embedding (i-vector, d-vector, x-vector ...)

[Qian, et al., ICML'19][Liu, et al., INTERSPEECH'18]

Adversarial Training

[Chou, et al., INTERSPEECH'18]

Speaker classifier and encoder are learned iteratively

= instance normalization (remove speaker information)

IN

= instance normalization (remove speaker information)

Content Encoder

= instance normalization (remove speaker information)

- = instance normalization (remove speaker information)
- = adaptive instance normalization

(only influence speaker information)

Training from VCTK

[Chou, et al., INTERSPEECH'18] [Liu, et al., INTERSPEECH'19]

Cycle GAN

as close as possible (L1 or L2 distance)

Cycle GAN

as close as possible

StarGAN

[Kaneko, et al., INTERSPEECH'19]

For CycleGAN: If there are N speakers, you need N x (N-1) generators.

StarGAN

Each speaker is represented as a vector.

Blow

Step of flow **Coupling network** Block Affine coupling : Convolution Step of flow ReLU Coupling : network Convolution Step of flow ReLU ActNorm Embedding Squeeze Adapter Hyperconvolution **Channel mixer** A y Х

Figure 1: Blow schema featuring its block structure (left), steps of flow (center), and coupling network with hyperconvolution module (right).

Ref for flow-based model: https://youtu.be/uXY18nzdSsM

Flow-based model for VC

Concluding Remarks

- [Huang, et al., arXiv'19] Wen-Chin Huang, Tomoki Hayashi, Yi-Chiao Wu, Hirokazu Kameoka, Tomoki Toda, Voice Transformer Network: Sequence-to-Sequence Voice Conversion Using Transformer with Text-to-Speech Pretraining, arXiv, 2019
- [Biadsy, et al., INTERSPEECH'19] Fadi Biadsy, Ron J. Weiss, Pedro J. Moreno, Dimitri Kanevsky, Ye Jia, Parrotron: An End-to-End Speech-to-Speech Conversion Model and its Applications to Hearing-Impaired Speech and Speech Separation, INTERSPEECH, 2019
- [Nachmani, et al., INTERSPEECH'19] Eliya Nachmani, Lior Wolf, Unsupervised Singing Voice Conversion, INTERSPEECH, 2019
- [Seshadri, et al., ICASSP'19] Shreyas Seshadri, Lauri Juvela, Junichi Yamagishi, Okko Räsänen, Paavo Alku, Cycle-consistent Adversarial Networks for Non-parallel Vocal Effort Based Speaking Style Conversion, *ICASSP*, 2019

- [Patel, et al., SSW'19] Maitreya Patel, Mihir Parmar, Savan Doshi, Nirmesh Shah and Hemant A. Patil, Novel Inception-GAN for Whisper-to-Normal Speech Conversion, ISCA Speech Synthesis Workshop, 2019
- [Gao, et al., INTERSPEECH'19] Jian Gao, Deep Chakraborty, Hamidou Tembine, Olaitan Olaleye, Nonparallel Emotional Speech Conversion, INTERSPEECH, 2019
- [Mimura, et al., ASRU 2017]Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara, Cross-domain Speech Recognition Using Nonparallel Corpora with Cycle-consistent Adversarial Networks, ASRU, 2017
- [Kaneko, et al., ICASSP'19] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo, CycleGAN-VC2: Improved CycleGAN-based Non-parallel Voice Conversion, ICASSP 2019
- [Kaneko, et al., INTERSPEECH'19] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo, StarGAN-VC2: Rethinking Conditional Methods for StarGAN-Based Voice Conversion, INTERSPEECH 2019

- [Chou, et al., INTERSPEECH'18] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, Lin-shan Lee, "Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations", INTERSPEECH, 2018
- [Chou, et al., INTERSPEECH'19] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, "One-shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization", INTERSPEECH, 2019
- [Keskin, et al., ICML workshop'19] Gokce Keskin, Tyler Lee, Cory Stephenson, Oguz H. Elibol, Measuring the Effectiveness of Voice Conversion on Speaker Identification and Automatic Speech Recognition Systems, ICML workshop, 2019
- [Deng, et al., ICASSP'20] Chengqi Deng, Chengzhu Yu, Heng Lu, Chao Weng, Dong Yu, PitchNet: Unsupervised Singing Voice Conversion with Pitch Adversarial Network, ICASSP, 2020
- [Luo, et al., ICASSP'20] Yin-Jyun Luo, Chin-Chen Hsu, Kat Agres, Dorien Herremans, Singing Voice Conversion with Disentangled Representations of Singer and Vocal Technique Using Variational Autoencoders, ICASSP, 2020

- [Chen et al., INTERSPEECH'19] Li-Wei Chen, Hung-Yi Lee, Yu Tsao, Generative adversarial networks for unpaired voice transformation on impaired speech, INTERSPEECH, 2019
- [Zhao, et al., INTERSPEECH'19] Guanlong Zhao, Shaojin Ding, Ricardo Gutierrez-Osuna, Foreign Accent Conversion by Synthesizing Speech from Phonetic Posteriorgrams, INTERSPEECH, 2019
- [Srivastava, et al., arXiv'19] Brij Mohan Lal Srivastava, Nathalie Vauquier, Md Sahidullah, Aurélien Bellet, Marc Tommasi, Emmanuel Vincent, Evaluating Voice Conversion-based Privacy Protection against Informed Attackers, arXiv, 2019
- [Hsu, et al., APSIPA'16] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, Hsin-Min Wang, Voice Conversion from Non-parallel Corpora Using Variational Auto-encoder, APSIPA, 2016
- [Qian, et al., ICML'19] Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, Mark Hasegawa-Johnson, AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss, ICML, 2019

- [Sun, et al., ICME'16] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, Helen Meng, Phonetic posteriorgrams for many-to-one voice conversion without parallel data training, ICME, 2016
- [Liu, et al., INTERSPEECH'18] Songxiang Liu, Jinghua Zhong, Lifa Sun, Xixin Wu, Xunying Liu, Helen Meng, Voice Conversion Across Arbitrary Speakers Based on a Single Target-Speaker Utterance, INTERSPEECH, 2018
- [Joan, et al., NeurIPS'19] Joan Serrà, Santiago Pascual, Carlos Segura, Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion, NeurIPS, 2019
- [Liu, et al., INTERSPEECH'19] Andy T. Liu, Po-chun Hsu and Hung-yi Lee, "Unsupervised End-to-End Learning of Discrete Linguistic Units for Voice Conversion", INTERSPEECH, 2019