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What is Voice Conversion (VC)?

Sp eech Sp eech

#
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What is preserved? Content

What is changed? Many different aspects ...



Speaker

* The same sentence said by different people has
different effect.

* Deep Fake: Fool humans / speaker verification
system

* One simple way to achieve personalized TTS
* Singing

[Nachmani, et al., INTERSPEECH’19]
https://enk100.github.io/Unsupervised_Singing_Voice_Conversion/

[Deng, et al., ICASSP’20]
https://tencent-ailab.github.io/pitch-net/



Speaker
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Speaking Style

* Emotion
[Gao, et al., INTERSPEECH’19]

* Normal-to-Lombard Normal Lombard

[Seshadri, et al., ICASSP’19]
Source of audio:

] https://shreyas253.github.io/SpStyl
* Whisper-to-Normal eConv_CycleGAN/

[Patel, et al., SSW’19]

 Singers vocal technique conversion

[Luo, et al., ICASSP‘20] " .
‘lip thrill’ (58/&) or ‘vibrato’ (883%)



Improving Intelligibility

* Improving the speech intelligibility
e surgical patients who have had parts of their

articulators removed
[Biadsy, et al., INTERSPEECH’19][Chen et al., INTERSPEECH’19]

* Accent conversion

 voice quality of a non-native speaker and the
pronunciation patterns of a native speaker

* Can be used in language learning
[Zhao, et al., INTERSPEECH’19]



Data Augmentation

A raining

&
M% — Data x 2

[Keskin, et al., ICML workshop’19]

ERSiL Wi 15 [Mimura, et al.,
Clean Speech Noisy Speech ASRU 2017]




In real implementation ...

speech speech
#
Conversion
d d
Usually T' =T

Seq2seq is not needed
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* Rule-based: Griffin-Lim algorithm
* Deep Learning: WaveNet

Used in VC, TTS, Speech Separation, etc. (not today)



CategOrieS Lack of training data:

e Model Pre-training [Huang, etal., arXiv'19]

e Synthesized data!
" Parallel Data [Biadsy, et al., INTERSPEECH’19]
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< How are you? How are you?

* This is “audio style transfer”
* Borrowing techniques from image
_ Unparallel Data style transfer
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Feature Disentangle
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Feature Disentangle
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Feature Disentangle

as close as possible (L1 or L2 distance)

Content t,- I
Encoder e T
MMW " —» Decoder —» MW
input audio Speaker ___ reconstructed
Encoder

How can you make one encoder for content
and one for speaker?



Using Speaker Information

Assume we know the speakers of training utterances

Speaker A Content ‘9 Speaker A
Encoder e I
" —» Decoder —» \ ‘.M
input audlo r A @ reconstructed
O r g (0

[Hsu, et al., APSIPA’16]

* One-hot vector for each speaker



Using Speaker Information

Assume we know the speakers of training utterances

Speaker B Content ‘v Speaker B
Encoder e I
"~ —» Decoder —»MW
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* One-hot vector for each speaker



p(alx') p(b|xY) p(c|xt) ...
. . ~ 2\
Pre-training Encoders L=
[Sun, et al., ICME’16] [Liu, et al., INTERSPEECH’18] DNN
* Speech recognition !
Content o -
Encoder H 0
" — Decoder — MW
input audlo Speaker __ reconstructed
Encoder

.

* One-hot vector for each speaker

Issue: difficult to consider new speakers

* Speaker embedding (i-vector, d-vector, x-vector ... )

[Qian, et al., ICML'19][Liu, et al., INTERSPEECH"18]



Adversarial Training

[Chou, et al., INTERSPEECH’18]

Learn to fool the
speaker classifier
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Speaker classifier and encoder are learned iteratively



Desighing network architecture
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. Lk =instance normalization (remove speaker information)



Desighing network architecture

= instance normalization (remove speaker information)

Content Encoder />/>/>/\




Desighing network architecture

Each channel has zero | : ' - ' |
mean and unit variance
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Desighing network architecture
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Designing network architecture

How are
¢ you?
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m = instance normalization (remove speaker information)

A6k = adaptive instance normalization
(only influence speaker information)



AN = adaptive instance normalization
(only influence speaker information)
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How are
you?

Desighing network architecture
Speaker
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Desighing network architecture
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For more results
[Chou, et al., INTERSPEECH 2019]

Unseen Speaker Utterances
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Issues
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[Chou, et al., INTERSPEECH’18]
[Liu, et al., INTERSPEECH’19]

2nd Stage Training

Cheat discriminator
Help speaker classifier
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o Only learn the patcher
2nd Stage Training  in the 21 stage
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Categories

* Training without parallel data
* Using CycleGAN

Conversion

Feature Disentangle

" Parallel Data

_ Unparallel Data <

\‘ Direct Transformation
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Become similar
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[Kaneko, et al., ICASSP’19]
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[Kaneko, et al., ICASSP’19]
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Cycle GAN

as close as possible (L1 or L2 distance)

1 Cycle consistency 1
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Cycle GAN

as close as possible
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as close as possible

scalar: belongs to
speaker Y or not




StarGAN For CycleGAN:

If there are N speakers, you need
[Kaneko, et al., INTERSPEECH’19] N x (N-l) generators
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StarGAN

Each speaker is represented
as a vector.
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as close as possible
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as close as possible
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Blow

Step of flow Coupling network
Block - .
E oc Affine coupling Convolution
Step of flow A
. . : Coupling RelU
H . network
Convolution
Step of flow
RelLU
Embedding Squeeze ActNorm
Channel mixer LEC ey Hyperconvolution
y X T T

[Joan, et al.,

Flow-based model for VC
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Figure 1: Blow schema featuring its block structure (left), steps of flow (center), and coupling network
with hyperconvolution module (right).

Ref for flow-based model: https://youtu.be/uXY18nzdSsM



Concluding Remarks

" Parallel Data

< ’

Direct Transformation

(_ Unparallel Data <

_ Feature Disentangle



Reference

* [Huang, et al., arXiv’19] Wen-Chin Huang,Tomoki Hayashi,Yi-Chiao Wu,Hirokazu
Kameoka,Tomoki Toda, Voice Transformer Network: Sequence-to-Sequence
Voice Conversion Using Transformer with Text-to-Speech Pretraining, arXiv, 2019

e [Biadsy, et al., INTERSPEECH’19] Fadi Biadsy, Ron J. Weiss, Pedro J.
Moreno, Dimitri Kanevsky, Ye Jia, Parrotron: An End-to-End Speech-to-Speech
Conversion Model and its Applications to Hearing-Impaired Speech and Speech
Separation, INTERSPEECH, 2019

* [Nachmani, et al., INTERSPEECH’19] Eliya Nachmani, Lior Wolf, Unsupervised
Singing Voice Conversion, INTERSPEECH, 2019

e [Seshadri, et al., ICASSP’19] Shreyas Seshadri, Lauri Juvela, Junichi
Yamagishi, Okko Rasanen, Paavo Alku,Cycle-consistent Adversarial Networks for
Non-parallel Vocal Effort Based Speaking Style Conversion, ICASSP, 2019



Reference

» [Patel, et al., SSW’19] Maitreya Patel, Mihir Parmar, Savan Doshi, Nirmesh Shah
and Hemant A. Patil, Novel Inception-GAN for Whisper-to-Normal Speech
Conversion, ISCA Speech Synthesis Workshop, 2019

* [Gao, et al., INTERSPEECH’19] Jian Gao, Deep Chakraborty, Hamidou Tembine,
Olaitan Olaleye, Nonparallel Emotional Speech Conversion, INTERSPEECH, 2019

* [Mimura, et al.,, ASRU 2017]Masato Mimura, Shinsuke Sakai, and Tatsuya
Kawahara, Cross-domain Speech Recognition Using Nonparallel Corpora with
Cycle-consistent Adversarial Networks, ASRU, 2017

* [Kaneko, et al., ICASSP’19] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and
Nobukatsu Hojo, CycleGAN-VC2: Improved CycleGAN-based Non-parallel Voice
Conversion, ICASSP 2019

* [Kaneko, et al., INTERSPEECH’19] Takuhiro Kaneko, Hirokazu Kameoka, Kou
Tanaka, and Nobukatsu Hojo, StarGAN-VC2: Rethinking Conditional Methods for
StarGAN-Based Voice Conversion, INTERSPEECH 2019



Reference

e [Chou, et al., INTERSPEECH’18] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee,
Lin-shan Lee, "Multi-target Voice Conversion without Parallel Data by
Adversarially Learning Disentangled Audio Representations”, INTERSPEECH,
2018

* [Chou, et al., INTERSPEECH’19] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee,
"One-shot Voice Conversion by Separating Speaker and Content Representations
with Instance Normalization", INTERSPEECH, 2019

* [Keskin, et al., ICML workshop’19] Gokce Keskin, Tyler Lee, Cory
Stephenson, Oguz H. Elibol, Measuring the Effectiveness of Voice Conversion on
Speaker Identification and Automatic Speech Recognition Systems, ICML
workshop, 2019

* [Deng, et al., ICASSP’20] Chenggqi Deng, Chengzhu Yu, Heng Lu, Chao
Weng, Dong Yu, PitchNet: Unsupervised Singing Voice Conversion with Pitch
Adversarial Network, ICASSP, 2020

* [Luo, et al., ICASSP‘20] Yin-Jyun Luo, Chin-Chen Hsu, Kat Agres, Dorien
Herremans, Singing Voice Conversion with Disentangled Representations of
Singer and Vocal Technique Using Variational Autoencoders, ICASSP, 2020



Reference

* [Chen et al.,, INTERSPEECH’19] Li-Wei Chen, Hung-Yi Lee, Yu Tsao, Generative
adversarial networks for unpaired voice transformation on impaired speech,
INTERSPEECH, 2019

* [Zhao, et al., INTERSPEECH’19] Guanlong Zhao, Shaojin Ding, Ricardo Gutierrez-
Osuna, Foreign Accent Conversion by Synthesizing Speech from Phonetic
Posteriorgrams, INTERSPEECH, 2019

» [Srivastava, et al., arXiv’19] Brij Mohan Lal Srivastava, Nathalie Vauquier, Md
Sahidullah, Aurélien Bellet, Marc Tommasi, Emmanuel Vincent, Evaluating Voice
Conversion-based Privacy Protection against Informed Attackers, arXiv, 2019

* [Hsu, et al., APSIPA’16] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu
Tsao, Hsin-Min Wang, Voice Conversion from Non-parallel Corpora Using
Variational Auto-encoder, APSIPA, 2016

e [Qian, et al., ICML19] Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong
Yang, Mark Hasegawa-Johnson, AUTOVC: Zero-Shot Voice Style Transfer with
Only Autoencoder Loss, ICML, 2019



Reference

e [Sun, et al., ICME’16] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, Helen Meng,
Phonetic posteriorgrams for many-to-one voice conversion without parallel data
training, ICME, 2016

e [Liu, et al., INTERSPEECH’18] Songxiang Liu, Jinghua Zhong, Lifa Sun, Xixin Wu,
Xunying Liu, Helen Meng, Voice Conversion Across Arbitrary Speakers Based on
a Single Target-Speaker Utterance, INTERSPEECH, 2018

* [Joan, et al., NeurlPS’19] Joan Serra, Santiago Pascual, Carlos Segura, Blow: a
single-scale hyperconditioned flow for non-parallel raw-audio voice conversion,
NeurlPS, 2019

* [Liu, et al., INTERSPEECH’19] Andy T. Liu, Po-chun Hsu and Hung-yi Lee,
"Unsupervised End-to-End Learning of Discrete Linguistic Units for Voice
Conversion", INTERSPEECH, 2019



